

Results of SoloGrid pilot project Decentralized load management to increase the efficiency of local energy communities

Dr. Andreas Ulbig, COO Nicolas Stocker, Damiano Toffanin, Thierry Zufferey

EPFL, 22/10/2018

Adaptricity Partner for digitizing grid operators

March 2014 Founding Vision – Digital & Efficient Power Grids

Since 2014 Strong Growth in DACH Area

February 2017 Majority Acquisition by LEONI Group

Since 2018 Market Expansion: Europe & Asia & Australia

Today Strong Innovation Partner for Grid Planning,

Asset Management and Digitization

Adaptricity Platform

Our Solutions

Input Data

- Grid topology (GIS, ...)
- Generation data (PV, Wind, ...)
- Customer data (yearly consumption, structural information)
- Meter data (smart meters, metered large-scale consumers)

- Usage of time-series data, physical models and artificial intelligence
- Grid simulations using all available utility-scale grid data (grid models and measurements)
- Cloud-based parallelized grid simulations (what-if)
- Big data analytics & process automation

Applications

Grid planning

Prosumer simulation

Data analytics

Monitoring

Asset management

Digitization trend in the electricity grid

Cost developments as driver for change

Comparison – Computation Power and Computation Cost (1992-2012)

Graphic: Deloitte University Press | DUPress.com

Copper Prices over last 100 years

Digitization trend in the electricity grid

SmartGrid = sensors & actuators + sensible usage

Transition Passive grid operation (more cables) → Active grid operation (ICT, energy management)

Costs Grid Maintenance 1.4 billion CHF per year (Swiss Federal Office of Energy)

Grid expansion 18 billion CHF + ICT: ca. 1.3 billion CHF

Status

Quo

Trend

Digitization trend in the electricity grid

Better ICT opens up new opportunities – BPL (Broadband over Powerline) versus classic Ripple Control

Classic ripple control

- <u>feed-forward control</u>, i.e. switching of **large appliance groups** in few distribution grid areas, **high latency** (min.)
- Example: larger city (~200'000 households), 40 MW flexible loads, ~12 control groups, no direct monitoring possible

BPL-based ripple control

- feedback control, i.e. monitoring and control of individual household applicances, low latency (sec.)
- IEEE Standard 1901-2010 (Dec. 2010) for high speed communication devices (up to 500 Mbit/s at physical layer)

SFOE Lighthouse project SoloGrid (2015–2017)

Data analytics of large data sets of distribution grid and prosumer measurements

Project Scope & Grid Analytics

- Analysis of future grid challenges
 (PV, EVs, HPs) using *real* distribution
 grid data in Solothurn (Riedholz)
- Validation of AI-based GridSense load management technology
- Integration of 2 GB grid data / month (real data = faulty, incomplete data)
- Quantitative analysis and visualization of grid dynamics
- Publication at CIRED Workshop 2018

Photovoltaic

EV chargers

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig - Paper #0550

Electric boilers

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig - Paper #0550

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig - Paper #0550

House

EV chargers

Electric boilers

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig - Paper #0550

GridSense for Load Management

What is it?

- Decentralized system for LV grid optimization (device swarm)
- Communication-less coordination of energy-hungry appliances

What does it do?

- Smooth aggregated consumption within LV grids
- Lower voltage fluctuations

How does it achieve that?

- Self-learning of occurring load patterns
- Self-learning of available load flexibility
- Application of neural networks

PROJECT FRAMEWORK

Project Partners

Why Adaptricity here at CIRED?

- ∇alidate the system
- ✓ Virtual environment for simulating:
 - Dynamical load models
 - Human behaviour
 - Weather and temperature
 - External controllers via plugins

- - Scenario simulation
 - Data analytics

SETUP OF TEST AREA

GridSense Fleet

56 Households (total)

62% Household participation

35 Households

7 PV units

34 Electric boilers

21 Heat pumps

3 House batteries

5 EV chargers

Validation Setup

Three operation modes for benchmarking:

Variables of Interest

Line loading

Transformer loading

Voltage daily range

Under-voltage violations

PERFORMANCE ASSESSMENT

Voltage Measurements

- Measurement period: 01.10.16 − 30.09.2017, 10-minute-resolution
- One boxplot per household in each mode
- Low voltage limits according European norm EN50160
- Less severe undervoltage events with GridSense
- Observation mode and ripple control feature similar voltage levels

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig - Paper #0550

Comparison Grid Reinforcement

- Comparison of current grid with reinforced grid
- Identical simulation scenarios except for underlying grid model

Measured and synthesized power time series

Simulations

Actual grid

Reinforced grid

Results

Grid connection voltages (while GS is on/off)

Grid connection voltages (while GS is on/off)

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig – Paper #0550

Original Grid Model

- Grid model as in reality
- Big daily voltage range: indication for voltage-related problems
- Reduced daily voltage range with GridSense*

*highly significant coefficient in multivariate linear regression

Grid reinforced (cable with doubled cross-section)

- GridSense OFF: state with just cable replacement
- GridSense ON: state with cable replacement and GridSense

Daily mean Temperature [°C]

Results Grid Reinforcement

Stocker Nicolas, Toffanin Damiano, Andreas Ulbig – Paper #0550

CONCLUSIONS

Conclusions

GridSense Performance

- Local voltage-based load control supports efficient and safe operation of distribution grid
- Additional benefits adjustable, detailed measurements provided
- Increasing potential with ongoing electrification

Innovative Analyses

- Simulation platform to combine the advantages of different analyses
- Combination of grid measurements, synthesized data, appliance models and local controllers
- Analyses limitations as reason for different plot types

Energy Management Effects

- Potential for infrastructure savings (specific comparison: replacement of main electric supply cable)
- Tradeoff Load management at local level vs. regional level
- In this project, ripple control shows detrimental impact on voltage

Adaptricity AG
Hohlstrasse 190, CH-8004 Zurich
+41 44 500 9245
www.adaptricity.com

Design the energy future with us!