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ABSTRACT 

The grid planning uncertainty related to the impacts of 

electric mobility on low voltage distribution grids can be 

decomposed into four dimensions: first, the often still 

opaque knowledge of today’s state of the grid; second, the 

speed of EV market penetration; third, the evolution of 

EV load patterns; fourth, the spatial distribution of EVs. 
This paper presents a methodology based on Monte Carlo 

simulations that can be used to reduce uncertainty and 

quantify the chance of overloading of specific lines or the 

likelihood of voltage violations on given buses. The output 

can be used to justify grid planning decisions. It has been 

found that the rated power of car chargers and the width 

of the time window in which most cars return home (time 

coincidence) have a significant influence on the outcomes. 

The methodology is applied to a case study of a residential 

low voltage grid located in central Switzerland. 

INTRODUCTION 

Distribution grid operators have designed power grids for 

decades with the principle of “fit and forget”. The 

paradigm worked well, until in recent times the rise in 

distributed generation and the electrification of mobility 

and space heating started dropping new, considerable 

burdens on the shoulder of an aging infrastructure. 

The mantra for operators, as always, is to react to ensure 

grid adequacy, reliability and safety. Keep the lights on, no 

matter what. The substantial issue is that the incoming 
wave of electrification carries substantial unknowns with 

it, casting a veil of opacity that hinders long term planning. 

Pervasive uncertainty 

Following the wave of photovoltaic expansion, plug-in 
electric vehicles (PEVs) are now a prominent emerging 

technology in residential electrification. The speed of 

adoption depends on a tangled web of relationships 

between technology, costs, policies and social dynamics. 

The uncertainty on the actual impact on a low voltage grid 

can be decomposed into four dimensions: 

Uncertainty on the status of the grid, or “reality gap”: 

low voltage distribution grids are only now becoming 

(slowly) more monitored. There is often a “reality gap” 

between what the grid planner believes is the state of the 

grid and, for better or worse, the actual state of the grid. 

                                                        
1 More affluent neighborhoods change first, and the (purchasing) 

choices of an individual tend to affect the choices of neighbors. 

Uncertainty on adoption speed: it is unclear how fast 

PEVs will spread. Sudden technology breakthroughs or 

aggressive policies may radically change the picture with 

relatively short notice.  

Uncertainty on load patterns: the load profile of a PEV 

depends on the rated power and the mode of usage, which 

in turn depends on an ecosystem of stochastic factors like 

house location, workplace location, energy cost, mobility 

preferences, personal lifestyle, external charging 

management schemes like aggregators or coordination 

solutions on neighborhood or parking scale. There is 

intrinsic uncertainty on how each of these factors will 

evolve in the near future and, therefore, how load patterns 

will develop. 

Uncertainty on geographical distribution of new units: 

on the small scale of residential distribution grids, 

neighbourhood effects1 can create a cascade adoption of 

PEVs, with consequent emergence of local hot-spots. 

Such pervasive uncertainty can be daunting, pushing grid 

planners towards preventive overinvestments, wait-and-

see strategies, or resort to the use of forecasts of 

technology adoption to target and schedule 

countermeasures. The last option, while instilling 

confidence, may turn out to have undesired repercussions 

in case of errors. 

Fragility to forecasting errors 

Forecasts provide predictions that can be used to work out 

decisions and design adaptation or mitigation plans. As 

remarked by Taleb in [1], the forecast translates into a 

decision, and, accordingly, the uncertainty attached to the 
forecast is endogenous to the decision itself.  

The comforting nature of forecasts may induce an 

excessive confidence in planning decisions, introducing 

fragility into the system. Focusing the attention on the 

predicted scenarios might lead to a neglection of other 

possibilities [2]. For these reasons, we propose to move 

towards adaptive grid planning approaches that account 

for uncertainty without depending on long-term forecasts. 

Non-predictive grid planning 

Ironically, long-term forecasts of technology adoption 

tend to change at a fast pace. Models of electric 

consumption of new appliances are frequently revised as 

technology evolves. Both are far from being consistent 

across researchers or providers. On the other hand, 
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investments in grid infrastructure are meant to be future-

proof, with depreciation periods of 30-40 years. It is 

therefore desirable to adopt planning methods and 

processes that are able to account for such variability in 
models and forecasts and that can estimate the likelihood 

of a given outcome, such as the need for a transformer 

replacement, in a stable fashion. Such non-predictive 

approaches should highlight which outcomes are 

intrinsically uncertain, because of, for instance, large 

sensitivity to specific model parameters.  

Leveraging Monte Carlo Simulations 

In the context of grid planning, the aim is to decouple the 

action from the forecasts of technology adoption and 

follow a more general scenario-based attitude. In fact, even 

a perfect forecast on the penetration rate of a technology in 

a certain year would address only one of the four 

dimensions of the uncertainty. The actual impact on the 

grid would still depend on the spatial distribution of the 

new units, the individual load patterns, i.e. functions of the 
rated power of the chargers, habits of the users, etc., and 

the uncertainty on the current utilization level of the grid.  

Monte Carlo simulations are collections of random 

experiments designed to explore a space of possible 

realizations. Each random experiment tests a peculiar 

variation of parameters. Collectively, this set of 

experiments provides a rich picture, which allows to 

estimate the likelihood of some outcomes, conditional to 

the input parameters. Several scenarios with different 

modelling parameters can be tested to explore sensitivities, 

tipping points, critical conditions, potential bottlenecks, 
but most importantly, to identify invariant quantities, 

establish which outcomes are intrinsically uncertain, 

which have a higher confidence, and which actions can be 

conducted or avoided as an ideal future strategy. 

METHODOLOGY 

This paper presents a methodology for non-predictive 

analysis of the impact of electric vehicles on distribution 

grids based on Monte Carlo scenario analysis. For 

illustration purposes, the methodology is applied to a real 
low-voltage residential electricity grid in Switzerland. 

Initial setup 

The study area is a low-voltage grid of a residential area in 
central Switzerland (Figure 1). The grid consists of 298 

buses, of which 198 are connection points, and 553 

residential customers. The maximum peak load is 650 kW.  

A “status-quo scenario” is built by populating the grid with 

load profiles of 15-minutes timesteps, spanning one year, 

from July 2016 to July 2017, to create an accurate 

depiction of today’s state of the grid. Profiles for 

unmetered customers are generated using time-

inhomogeneous Markov Chain Models built on real 

profiles of customers of comparable annual consumption, 

based on [3]. The individual synthetic profiles are adjusted 

such that the aggregated load matches the metered load at 

the transformer. A deterministic power flow is then run to 

compute line loading and voltage levels. Quasi-dynamic 

power flow simulations are carried out using the planning 

platform Adaptricity.Sim. Such arrangement provides the 
baseline for further expansions scenarios of PEV.  

 

 
Figure 1 – Low voltage residential test grid. 

Framing the problem 

The uncertainty related to future scenarios of electric 

mobility is explored and address with Monte Carlo 

simulations that span an exploration space designed to 
highlight relevant sensitivity. PEV units are added on top 

of the status-quo scenario. To prevent model overfitting, 

PEVs are modelled in a way that aim at preserving both 

representativeness and simplicity, the details are discussed 

in section Modelling Decisions. Three models of PEV are 

tested and compared in three scenarios, i.e. Model A, 

Model B, Model C. The models’ differences are 

summarized in Table 1 and formalized in detail in Table 2. 

 
Table 1 – Key features of the three PEV scenarios 

Scenario Characteristic features 

Model A (harsh) High charging power (11kW) 

High commuting coincidence 

Model B (medium) High charging power (11kW) 

Mild commuting coincidence 

Model C (mild) Low charging power (3.7 kW) 

Mild commuting coincidence 

Definitions 

Some definitions are given to facilitate further discussion:  

PEV penetration rate: ratio in percent between the 

number of PEVs and the number of metered customers. 

Monte Carlo Variation (MC-Variation): Simulation of 

1-year, with a given set of stochastic model parameters, a 
given penetration of PEVs and a given geographical 

allocation of the units on the grid. 

Monte Carlo Scenario (MC-Scenario): A collection of 

several MC-Variations, with common modelling 

assumptions.  

Violated line: line with ampacity exceeded at least once, 

within a MC-Variation. 

Violated bus: bus with voltage exiting the range 0.9-1.1 

p.u. at least once, within a MC-Variation. 
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The exploration space 

For each MC-Variation, units are allocated at random to 

metered customers, with equal probabilities. Clustering 

and neighbourhood adoption dynamics are not modelled. 
The parameters of each unit are sampled independently, 

following the distributions of Table 2. Penetration rates 

span from 10% to 60%, in incremental steps of 10 

percentage points. A total of 180 simulations of 1-year are 

carried out, split equally across the three scenarios. 

 

Metrics of interest 

The focus of the simulations is on line overloading and 

voltage violations. In order to summarize the results of the 

several MC-Variations in a tractable fashion, aggregated 

metrics are used, such as the total length of overloaded 
lines and the total number of buses with violations. 

 

Modelling Decisions 

In this paper, a simplifying assumption is that all PEVs are 
charged only at home. Each PEV has a battery capacity of  

𝐶 [kWh], an energy utilization (while driving) of 

𝐸 [kWh/km] and a charging power at home of 𝑃 [kW]. 

Each PEV carries out one trip every day of 𝐷 [km], 

re-enters at home at an arrival time 𝐴𝑇 [clock time] and 

starts charging immediately, with perfect efficiency, until 

the battery is fully loaded. All parameters except the 

charging rated power 𝑃 vary stochastically within the PEV 

population (Table 2). The battery capacity 𝐶 and the 

energy utilization 𝐸 are constant within one MC-Variation 

and are randomly sampled. Conversely, arrival time 𝐴𝑇 

and driving distance 𝐷 are sampled independently for each 

day and each PEV. Different commuting habits are 

modelled by imposing that different PEVs have different 

mean arrival times 𝐴𝑇µ and different mean driving distances 

𝐷𝜋, with different variances. 

 

 
Figure 2 – Example of assignment of arrival time for two PEVs. 

More formally, within one MC-variation, the 𝑖-th PEV is 

assigned a mean arrival time 𝐴𝑇µ
𝑖 and a half-amplitude 

𝐴𝑇ℎ
𝑖. Each day, the arrival time 𝐴𝑇𝑖  of the 𝑖-th PEV is 

sampled with uniform distribution from the interval 

[𝐴𝑇µ
𝑖 − 𝐴𝑇ℎ

𝑖 , 𝐴𝑇µ
𝑖 + 𝐴𝑇ℎ

𝑖], see Figure 2. An analogous 

assignment of parameters is carried out for the driving 

distance 𝐷. The probability distributions adopted for 𝐷µ, 

𝐷𝑠, 𝐴𝑇µ, 𝐴𝑇𝑠 are reported in Table 2.  

 

Table 2 – Parameters of PEV models 

Parameter Symbol Probability

Distrib. 

Distribution 

Parameters 

Battery 

capacity 

C Uniform min = 15 kWh  

max = 90 kWh 

Charging 

power 

P Fixed 11 kW (Model A) 

11 kW (Model B) 

3.7 kW (Model C) 

Energy 

utilization 

E Uniform min = 0.165 kWh/km 

max = 0.24 kWh/km 

Arrival 

time 

(mean) 

𝐴𝑇µ  

 

Truncated 

normal 

min = 14:00 

µ = 18:00 

σ = 1 hours (Model A) 

σ = 2 hour (Model B) 

σ = 2 hours (Model C) 

max = 21:00  

Arrival 

time 

(half-

amplitude) 

𝐴𝑇ℎ 

 

Truncated 

normal 

min = 30 minutes 

µ = 1 hour 

σ = 1 hour 

max = 3 hours 

Driving 

distance 

(mean) 

𝐷µ 

 

 

Truncated 

normal 

min = 10 km 

µ = 30 km 

σ = 20 km 

max = 100 km 

Driving 

distance 

(half-

amplitude) 

𝐷ℎ 

 

Truncated 

Normal 

min = 5 km 

µ = 10 km 

σ = 10 km 

max = 30 km 

For the sake of clarity, Figure 3 reports an example of the 

distribution of the aggregated PEV load in one of the 

modelled scenarios. The quantile plot features the 

aggregated PEV load summarized over all MC-Variations 

for 50% penetration rates of Model A “harsh”, and all days 

of simulation.

 

Figure 3 - Aggregated PEV load, Model A, 50% penetration rate 

RESULTS AND DISCUSSION 

The three PEV models (Model A “harsh”, Model B 

“medium”, Model C “mild”),  differ only in the rated 

power of car chargers and the degree of “coincidence of 

commuting”, modelled by the standard deviation of the 

mean arrival time 𝐴𝑇𝜇  within the PEV population (Table 

1, Table 2). Nevertheless, there are striking differences 

between the outcomes of the three scenarios, indicating 

significant model sensitivities to input parameters.  

Quantile plots are used to summarize the results of the 

three PEV MC-Scenarios (Figure 4, Figure 5, Figure 6). 

The total length of overloaded lines and the total number 

of violated buses are used as assessment metric. Each 
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colour band, or ribbon, covers one decile of outcomes. 

Ribbons are plotted against the PEV penetration rate.  

In this case study, for Model A (Figure 4) the tipping point 

for line overloading is at 30% penetration rate, while it 
moves to 40% penetration for Model B (Figure 5), and to 

around 60% for Model C. In other words, in this case twice 

as many electric vehicles can be accommodated without 

significant countermeasures, if future scenarios converged 

towards Model C instead of Model A. Similarly, in the case 

of a penetration rate of 50%, the median scenario of Model 

A has ca. 650m of overloaded lines, while the median of 

Model B is ca. 350m and the median of Model C is zero.  

 

 
Figure 4 – Results of MC-scenario with PEV model A “harsh”. 

 

 
Figure 5 – Results of MC-scenario with PEV model B “medium”. 

Similar considerations apply for tipping points of voltage 

violations. The number of buses with voltage violations 

grows rapidly with Model A, which features higher 

installed capacities and coincidence effect. Effects are less 
relevant in Model B, to the point that the scenario Model C 

features zero voltage violations even in the worst case. 

 

 
Figure 6 – Results of MC-scenario with PEV model C “mild”. 

Strategies to cope with sensitivities 

It is worth noticing that up to a penetration rate of 20%, in 

all scenarios the impact is limited. Most distribution grids 

have some margin to accommodate extra load. This means 

that, in general, the grid planner does not have to blindly 

rely on models but can harvest data from early adopters to 

tune and fit models to the specific features of each specific 

area, reduce uncertainty, take action, and keep iterating. 

The ability to extract value out of data becomes a tool to 

plan in a robust manner without overinvesting.  
A complementary measure is to resort to smart charging 

strategies to coordinate the behavior and narrow it down to 

a spectrum of desired charging patterns. 

 

Geographical visualization of likely outcomes 

Even with equal modelling choices and penetration rates, 

the set of lines with overload can change significantly 

depending on the geographical allocation of the units. The 

real future allocation is not known ex ante, and several 

configurations with substantially different outcomes may 

be equally likely. To extract actionable information, 

attention can be focused on the outcomes with the highest 

confidence, i.e. outcomes that are invariant throughout all 

MC-variations.  

For example, Figure 7 summarizes the results of all 
MC-variations adopting PEV Model A and a penetration 

rate of 50%. Green elements are the ones that never 
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experience violations. On the other hand, red elements are 

violated in 100% of simulations. Orange elements are 

violated in at least one MC-variation. 

 

 
Figure 7 – Example of traffic light geographical visualization.                           

Here: Model A, 50% penetration rate.  

Table 3 – Color codes of Figure 6 

Color MC-variations with violations [%] 

GREEN 0% 

ORANGE 0% < x < 100% 

RED 100% 

 

Such visualization of the impact for a given penetration 

level relies on the fundamental assumption that the model 

used is representative. As stated before, this can be 

achieved by leveraging information harvested on early 

adopters and/or applying control strategies to steer the 

behaviour of the PEV population. Under this assumption, 
the Monte Carlo approach provides a comprehensive 

framework to plan countermeasures or, whenever 

uncertainty persists (the “orange” cases), to justify an 

upgrade in metering infrastructure to obtain the double 

benefit of reducing uncertainty from the reality gap and 

improving models. 

 

CONCLUSIONS 

Monte Carlo simulations can span an exploration space 

and provide a quantitative estimation of the likelihood of 

certain outcomes, conditionally to a given input set of 

assumptions. Nevertheless, it is difficult to justify a priori 

that a certain set of assumption is more representative or 

likely than another. In other words, the likelihood of a 
given set of assumptions about future scenarios is 

undefined (Figure 8).  

In order to use the presented methodology, it becomes 

therefore paramount for grid planners to extend the data 

gathering infrastructure, i.e. grid sensors in both the 

medium and low-voltage grid level, and use the thus 

acquired knowledge to constantly update grid models that 

can represent the space of possibilities of the near future. 

Monte Carlo simulations can then be used iteratively, 

i.e. over a sequence of planning cycles, to discriminate 

each time between high- and low-uncertainty events. In 

case of large uncertainty, it may be more effective, if 

feasible, to postpone investment decisions, set financial 
resources aside, gather more data and then act quickly. 

 

 
Figure 8 – Exemplification of the dependence on assumptions 

Monte Carlo scenarios can be flexibly defined depending 

on the knowledge about the situation at hand. Thus, the 

local situation can be reflected without over-simplifying 

generalizations.  

The Monte Carlo approach requires few input data and 

reduces the number of necessary assumptions. Moreover, 
the dependence on external expert knowledge decreases 

because of lower prediction requirements for planning. 

 

 

 

 

 

 

REFERENCES 

 

[1]  N. N. Taleb, «Errors, robustness and the fourth 

quadrant,» International Journal of Forecasting 25, 

2009.  

[2]  N. N. Taleb, D. G. Goldstein et M. W. Spitznagel, 

«The Six Mistakes Executive Make in Risk 

Management,» Harvard Business Review, 2009.  

[3]  D. Toffanin, «Generation of customer load profiles 

based on smart-metering time series, building-level 

data and aggregated measurements,» ETH archive of 

master Theses. ID: PSL 1613, Zurich, 2016. 

 

 


